Formula | Meaning |
---|---|
v = s / t | {velocity} = {distance} / {time} |
F = m . a | {force} = {mass} . {acceleration} |
W = m . g | {weight} = {mass} . {gravitational acceleration} |
v = u + (a . t) | {velocity} = {initial velocity} + ({acceleration} . {time}) |
v 2 = u2 + (2 . a . s) | {final velocity}2 = {initial velocity}2 + (2 . {acceleration} . {distance}) |
s = (u . t) + (½ . a . t2) | {distance} = ({initial velocity} . {time}) + (½ . {acceleration} . {time}2) |
s = ½ (u + v ) . t | {distance} = ½ ({initial velocity} + {final velocity}) . {time} |
p = m . v | {momentum} = {mass} . {velocity} |
µ = F / R | {coefficient of friction} = {force} / {resistance} |
µ' = F' / R | {coefficient of sliding friction} = {sliding force} / {resistance} |
µ = tan(θ) | {coefficient of friction} = tan({angle}) |
T = F . r | {torque} = {force} . {radius of curvature} |
ω = θ / t | {angular velocity} = {angle} / {time} |
T = (2 . π) / ω | {period} = (2 . {pi}) / {angular velocity} |
v = r . ω | {velocity} = {radius of curvature} . {angular velocity} |
a = ω2 . r | {angular acceleration} = {angular velocity}2 . {radius of curvature} |
tan(θ) = v2 / (g . r ) | tan({angle}) = {velocity}2 / ({gravitational acceleration} . {radius of curvature}) |
KErot = ½ I . ω2 | {rotational kinetic energy} = ½ {moment of inertia} . {angular velocity}2 |
p = I . ω | {angular momentum} = {moment of inertia} . {angular velocity} |
T = I . a | {torque} = {moment of inertia} . {angular acceleration} |
ω = ω + a . t | {angular velocity} = {initial angular velocity} + {angular acceleration} . {time} |
ω2 = ω2 + (2 . a . θ) | {angular velocity}2 = {initial angular velocity}2 + (2 . {angular acceleration} . {angle}) |
θ = ω . t + (½ . a . t2) | {angle} = {initial angular velocity} . {time} + (½ . {angular acceleration} . {time}2) |
θ = ½ . (ω + ω) . t | {angle} = ½ . ({initial angular velocity} + {angular velocity}) . {time} |
W = T . θ | {work} = {torque} . {angle} |
W = F . s | {work} = {force} . {distance} |
KE = ½ . m . v2 | {kinetic energy} = ½ . {mass} . {velocity}2 |
PE = m . g . h | {potential energy} = {mass} . {gravitational acceleration} . {height} |
v = (2 . g . h)½ | {velocity} = (2 . {gravitational acceleration} . {height})½ |
P = W / t | {power} = {work} / {time} |
P = F . v | {power} = {force} . {velocity} |
v = ±ω . (a - s)½ | {velocity} = {plusminus}{angular velocity} . ({angular acceleration} - {distance})½ |
s = a . cos(ω . t) | {distance} = {angular acceleration} . cos({angular velocity} . {time}) |
s = a . cos( (ω . t) + ε) | {distance} = {angular acceleration} . cos( ({angular velocity} . {time}) + {initial phase angle}) |
T = (2 . π) / ω | {period} = (2 . {pi}) / {angular velocity} |
T = 2 . π . (m/k)½ | {period} = 2 . {pi} . ({mass}/{stiffness constant})½ |
F = (G . m1 . m2) / s2 | {force} = ({universal gravitational constant} . {mass}1 . {mass}2) / {distance}2 |
ve = ( (2 . G . mE) / rE )½ | {escape velocity} = ( (2 . {universal gravitational constant} . {mass of earth}) / {radius of earth})½ |
E = Ts / Tst | {Youngs modulus} = {tensile stress} / {tensile strain} |
W = (E . A . e) / (2 . L) | {work} = ({Youngs modulus} . {area} . {extension}) / (2 . {original length}) |
p . V = n . R . θ | {pressure} . {volume} = {number of moles} . {gas constant} . {temperature} |
n = c / cmat | {refractive index} = {speed of light} / {speed of light in material} |
n 1 . sin(θ1) = n 2 . sin(θ2) | {refractive index}1 . sin ({angle}1) = {refractive index}2 . sin ({angle}2) |
(1 / f ) = (1 / f 1) + (1 / f 1) + ... | (1 / {focal length}) = (1 / {focal length}1) + (1 / {focal length}1) + ... |
f = 1 / T | {frequency} = 1 / {period} |
fB = f1 - f2 | {beat frequency} = {frequency}1 - {frequency}2 |
f = (n / (2 . ls)) . (T / µ)½ | {frequency} = ({harmonic number} / (2 . {string length})) . ({period} / {mass per unit length})½ |
I = Q . t | {current} = {charge} . {time} |
R = V / I | {resistance} = {voltage} / {current} |
R = (ρ . l) / A | {resistance} = ({resistivity} . {length}) / {area} |
G = 1 / R | {conductance} = 1 / {resistance} |
σ = 1 / ρ | {conductivity} = 1 / {resistivity} |
J = I / A | {current density} = {current} / {area} |
E = E1 + E2 + ... | {electromotive force} = {electromotive force}1 + {electromotive force}2 + ... |
Rs = R1 + R1 ... | {series resistance} = {resistance}1 + {resistance}1 ... |
(1/Rp) = (1/R1) + (1/R1) ... | (1/{parallel resistance}) = (1/{resistance}1) + (1/{resistance}1) ... |
P = V . I | {power} = {voltage} . {current} |
P = V2 / R | {power} = {voltage}2 / {resistance} |
P = I2 . R | {power} = {current}2 . {resistance} |
F = (1 / (4 . π . ε0 . εr) ) . ( Q1 . (( Q2 ) / r 2) | {force} = (1 / (4 . {pi} . {permittivity of free space} . {relative permittivity}) ) . ( {charge}1 . (( {charge}2 ) / {separation}2) |
E = (1 / (4 . π . ε0 . εr) ) . (Q / r 2) | {electric field strength} = (1 / (4 . {pi} . {permittivity of free space} . {relative permittivity}) ) . ({charge} / {separation}2) |
V = (1 / (4 . π . ε0 . εr) ) . (Q / r ) | {voltage} = (1 / (4 . {pi} . {permittivity of free space} . {relative permittivity}) ) . ({charge} / {separation}) |
W = Q . V | {work} = {charge} . {voltage} |
E = V / r | {electric field strength} = {voltage} / {separation} |
C = Q / V | {capacitance} = {charge} / {voltage} |
C = (ε0 . εr . A) / r | {capacitance} = ({permittivity of free space} . {relative permittivity} . {area}) / {separation} |
(1 / Cs ) = (1 / C1) + (1 / C2) + ... | (1 / {series capacitance}) = (1 / {capacitance}1) + (1 / {capacitance}2) + ... |
Cp = C1 + C2 ... | {parallel capacitance} = {capacitance}1 + {capacitance}2 ... |
V = V0 . e(-t/(C . R)) | {voltage} = {initial voltage} . e(-{time}/({capacitance} . {resistance})) |
Ψ = A . B . cos(θ) | {electric flux} = {area} . {magnetic field strength} . cos({angle}) |
B = (µ0 . µr . I) / (2 . π . s) | {magnetic field strength} = ({permeability of free space} . {relative permeability} . {current}) / (2 . {pi} . {distance}) |
Bs = (µ0 . µr . N . I | {magnetic field strength long solenoid} = ({permeability of free space} . {relative permeability} . {number of turns} . {current} |
F = B . I . l . sin(θ) | {force} = {magnetic field strength} . {current} . {length} . sin({angle}) |
F = B . Q . v . sin(θ) | {force} = {magnetic field strength} . {charge} . {velocity} . sin({angle}) |
F = (µ0 . µr . I1 . I2 . l) / (2 . π . r ) | {force} = ({permeability of free space} . {relative permeability} . {current}1 . {current}2 . {length}) / (2 . {pi} . {separation}) |
V = VMAX . sin((f . t) / (2 . π) | {voltage} = {maximum voltage} . sin (({frequency} . {time}) / (2 . {pi}) |
I = Io . sin((f . t) / (2 . π) | {current} = {maximum current} . sin (({frequency} . {time}) / (2 . {pi}) |
VRMS = VMAX / 2½ | {RMS voltage} = {maximum voltage} / 2½ |
IRMS = Io / 2½ | {RMS current} = {maximum current} / 2½ |
X = VMAX / Io | {reactance} = {maximum voltage} / {maximum current} |
X = VRMS / IRMS | {reactance} = {RMS voltage} / {RMS current} |
f = 1 / (2 . π . (L . C)½) | {frequency} = 1 / (2 . {pi} . ({inductance} . {capacitance})½) |
F = NA . e | {Faraday constant} = {Avogadros number} . {electron charge} |
E = h . f | {energy} = {Plancks constant} . {frequency} |
E = h . c / λ | {energy} = {Plancks constant} . {speed of light} / {wavelength} |
λ = h / (mr . v) | {wavelength} = {Plancks constant} / ({relative mass} . {velocity}) |
N = N0 . e-λt | {number of atoms} = {initial number of atoms} . {e}-{decay constant}{time} |
T½ = (loge(2)) / λ | {halflife} = (loge(2)) / {decay constant} |
E = m . c2 | {energy} = {mass} . {speed of light}2 |
A = π . r 2 | {area} = {pi} . {radius}2 |
C = 2 . π . r | {circumference} = 2 . {pi} . {radius} |
A = 4 . π . r 2 | {area} = 4 . {pi} . {radius}2 |
V = (4 / 3) . π . r 3 | {volume} = (4 / 3) . {pi} . {radius}3 |
m = mo . ( 1 - ( v 2 / c2 ) )-½ | {mass} = {rest mass} . ( (1 - ( {velocity}2 / {speed of light}2 ) )-½ |
t = to . ( 1 - ( v 2 / c2 ) )-½ | {static time} = {moving time} . ( (1 - ( {velocity}2 / {speed of light}2 ) )-½ |
www.DigitalDan.co.uk