logo Physics Formulae
Ref.Library
 
Beds
Bolts
Chemistry
Clothes
Conversion
Electricial
First Aid
Food/Drink
Frequencies
Geography
Geology
History
Mathematics
Music
Nautical
Numerics
Paper
Physics
Signs
Weather
Websites
 
Contact Site
Contact Site
DigitalDan
My Other Sites
Hit = 6

Constants SI Units SI Prefixes Binary Prefixes Symbols Formulae Radioactivity Greek Letters EM Spectrum Laws/Thoeries

List of common Physics formulae and equations. The symbols used on this page conform to this in the symbol list on the previous page. There are various ways of indicating in a formula that two quantities should be multiplied. I wil use the equationForce(F) = Mass (m) times acceleration (a)
as an illistration.

F = m a
Symbols next to each other should be multiplied together
F = m x a
Use a multiply x symbol when multiplication required
F = m . a
Use a dot . symbol when multiplication required
I have used the dot = multiply convention.

FormulaMeaning
v = s / t{velocity} = {distance} / {time}
F = m . a{force} = {mass} . {acceleration}
W = m . g{weight} = {mass} . {gravitational acceleration}
v = u + (a . t){velocity} = {initial velocity} + ({acceleration} . {time})
v2 = u2 + (2 . a . s){final velocity}2 = {initial velocity}2 + (2 . {acceleration} . {distance})
s = (u . t) + (½ . a . t2){distance} = ({initial velocity} . {time}) + (½ . {acceleration} . {time}2)
s = ½ (u + v) . t{distance} = ½ ({initial velocity} + {final velocity}) . {time}
p = m . v{momentum} = {mass} . {velocity}
µ = F / R{coefficient of friction} = {force} / {resistance}
µ' = F' / R{coefficient of sliding friction} = {sliding force} / {resistance}
µ = tan(θ){coefficient of friction} = tan({angle})
T = F . r{torque} = {force} . {radius of curvature}
ω = θ / t{angular velocity} = {angle} / {time}
T = (2 . π) / ω{period} = (2 . {pi}) / {angular velocity}
v = r . ω{velocity} = {radius of curvature} . {angular velocity}
a = ω2 . r{angular acceleration} = {angular velocity}2 . {radius of curvature}
tan(θ) = v2 / (g . r)tan({angle}) = {velocity}2 / ({gravitational acceleration} . {radius of curvature})
KErot = ½ I . ω2{rotational kinetic energy} = ½ {moment of inertia} . {angular velocity}2
p = I . ω{angular momentum} = {moment of inertia} . {angular velocity}
T = I . a{torque} = {moment of inertia} . {angular acceleration}
ω = ω + a . t{angular velocity} = {initial angular velocity} + {angular acceleration} . {time}
ω2 = ω2 + (2 . a . θ){angular velocity}2 = {initial angular velocity}2 + (2 . {angular acceleration} . {angle})
θ = ω . t + (½ . a . t2){angle} = {initial angular velocity} . {time} + (½ . {angular acceleration} . {time}2)
θ = ½ . (ω + ω) . t{angle} = ½ . ({initial angular velocity} + {angular velocity}) . {time}
W = T . θ{work} = {torque} . {angle}
W = F . s{work} = {force} . {distance}
KE = ½ . m . v2{kinetic energy} = ½ . {mass} . {velocity}2
PE = m . g . h{potential energy} = {mass} . {gravitational acceleration} . {height}
v = (2 . g . h)½{velocity} = (2 . {gravitational acceleration} . {height})½
P = W / t{power} = {work} / {time}
P = F . v{power} = {force} . {velocity}
v = ±ω . (a - s)½{velocity} = {plusminus}{angular velocity} . ({angular acceleration} - {distance})½
s = a . cos(ω . t){distance} = {angular acceleration} . cos({angular velocity} . {time})
s = a . cos( (ω . t) + ε){distance} = {angular acceleration} . cos( ({angular velocity} . {time}) + {initial phase angle})
T = (2 . π) / ω{period} = (2 . {pi}) / {angular velocity}
T = 2 . π . (m/k)½{period} = 2 . {pi} . ({mass}/{stiffness constant})½
F = (G . m1 . m2) / s2{force} = ({universal gravitational constant} . {mass}1 . {mass}2) / {distance}2
ve = ( (2 . G . mE) / rE)½{escape velocity} = ( (2 . {universal gravitational constant} . {mass of earth}) / {radius of earth})½
E = Ts / Tst{Youngs modulus} = {tensile stress} / {tensile strain}
W = (E . A . e) / (2 . L){work} = ({Youngs modulus} . {area} . {extension}) / (2 . {original length})
p . V = n . R . θ{pressure} . {volume} = {number of moles} . {gas constant} . {temperature}
n = c / cmat{refractive index} = {speed of light} / {speed of light in material}
n1 . sin1) = n2 . sin2){refractive index}1 . sin ({angle}1) = {refractive index}2 . sin ({angle}2)
(1 / f) = (1 / f1) + (1 / f1) + ...(1 / {focal length}) = (1 / {focal length}1) + (1 / {focal length}1) + ...
f = 1 / T{frequency} = 1 / {period}
fB = f1 - f2{beat frequency} = {frequency}1 - {frequency}2
f = (n / (2 . ls)) . (T / µ)½{frequency} = ({harmonic number} / (2 . {string length})) . ({period} / {mass per unit length})½
I = Q . t{current} = {charge} . {time}
R = V / I{resistance} = {voltage} / {current}
R = (ρ . l) / A{resistance} = ({resistivity} . {length}) / {area}
G = 1 / R{conductance} = 1 / {resistance}
σ = 1 / ρ{conductivity} = 1 / {resistivity}
J = I / A{current density} = {current} / {area}
E = E1 + E2 + ...{electromotive force} = {electromotive force}1 + {electromotive force}2 + ...
Rs = R1 + R1 ...{series resistance} = {resistance}1 + {resistance}1 ...
(1/Rp) = (1/R1) + (1/R1) ...(1/{parallel resistance}) = (1/{resistance}1) + (1/{resistance}1) ...
P = V . I{power} = {voltage} . {current}
P = V2 / R{power} = {voltage}2 / {resistance}
P = I2 . R{power} = {current}2 . {resistance}
F = (1 / (4 . π . ε0 . εr) ) . ( Q1 . (( Q2 ) / r2){force} = (1 / (4 . {pi} . {permittivity of free space} . {relative permittivity}) ) . ( {charge}1 . (( {charge}2 ) / {separation}2)
E = (1 / (4 . π . ε0 . εr) ) . (Q / r2){electric field strength} = (1 / (4 . {pi} . {permittivity of free space} . {relative permittivity}) ) . ({charge} / {separation}2)
V = (1 / (4 . π . ε0 . εr) ) . (Q / r){voltage} = (1 / (4 . {pi} . {permittivity of free space} . {relative permittivity}) ) . ({charge} / {separation})
W = Q . V{work} = {charge} . {voltage}
E = V / r{electric field strength} = {voltage} / {separation}
C = Q / V{capacitance} = {charge} / {voltage}
C = (ε0 . εr . A) / r{capacitance} = ({permittivity of free space} . {relative permittivity} . {area}) / {separation}
(1 / Cs) = (1 / C1) + (1 / C2) + ...(1 / {series capacitance}) = (1 / {capacitance}1) + (1 / {capacitance}2) + ...
Cp = C1 + C2 ...{parallel capacitance} = {capacitance}1 + {capacitance}2 ...
V = V0 . e(-t/(C . R)){voltage} = {initial voltage} . e(-{time}/({capacitance} . {resistance}))
Ψ = A . B . cos(θ){electric flux} = {area} . {magnetic field strength} . cos({angle})
B = (µ0 . µr . I) / (2 . π . s){magnetic field strength} = ({permeability of free space} . {relative permeability} . {current}) / (2 . {pi} . {distance})
Bs = (µ0 . µr . N . I{magnetic field strength long solenoid} = ({permeability of free space} . {relative permeability} . {number of turns} . {current}
F = B . I . l . sin(θ){force} = {magnetic field strength} . {current} . {length} . sin({angle})
F = B . Q . v . sin(θ){force} = {magnetic field strength} . {charge} . {velocity} . sin({angle})
F = (µ0 . µr . I1 . I2 . l) / (2 . π . r){force} = ({permeability of free space} . {relative permeability} . {current}1 . {current}2 . {length}) / (2 . {pi} . {separation})
V = VMAX . sin((f . t) / (2 . π){voltage} = {maximum voltage} . sin (({frequency} . {time}) / (2 . {pi})
I = Io . sin((f . t) / (2 . π){current} = {maximum current} . sin (({frequency} . {time}) / (2 . {pi})
VRMS = VMAX / 2½{RMS voltage} = {maximum voltage} / 2½
IRMS = Io / 2½{RMS current} = {maximum current} / 2½
X = VMAX / Io{reactance} = {maximum voltage} / {maximum current}
X = VRMS / IRMS{reactance} = {RMS voltage} / {RMS current}
f = 1 / (2 . π . (L . C)½){frequency} = 1 / (2 . {pi} . ({inductance} . {capacitance})½)
F = NA . e{Faraday constant} = {Avogadros number} . {electron charge}
E = h . f{energy} = {Plancks constant} . {frequency}
E = h . c / λ{energy} = {Plancks constant} . {speed of light} / {wavelength}
λ = h / (mr . v){wavelength} = {Plancks constant} / ({relative mass} . {velocity})
N = N0 . e-λt{number of atoms} = {initial number of atoms} . {e}-{decay constant}{time}
T½ = (loge(2)) / λ{halflife} = (loge(2)) / {decay constant}
E = m . c2{energy} = {mass} . {speed of light}2
A = π . r2{area} = {pi} . {radius}2
C = 2 . π . r{circumference} = 2 . {pi} . {radius}
A = 4 . π . r2{area} = 4 . {pi} . {radius}2
V = (4 / 3) . π . r3{volume} = (4 / 3) . {pi} . {radius}3
m = mo . ( 1 - ( v2 / c2 ) ){mass} = {rest mass} . ( (1 - ( {velocity}2 / {speed of light}2 ) )
t = to . ( 1 - ( v2 / c2 ) ){static time} = {moving time} . ( (1 - ( {velocity}2 / {speed of light}2 ) )
www.DigitalDan.co.uk